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Based on the Landau-Levich model of a diffusion boundary layer, the mass transfer in continuous and 
dispersed phases of two immiscible liquids is described mathematically. Basic parameters of the model are 
calculated in terms of the hydraulic resistance in droplet motion. 

A mathematical description of the mass and heat transfer processes in two-phase media necessitates taking into 

account complex hydrodynamic conditions, in which these processes proceed and which are the factors governing the transfer 

rate. In most cases, the local velocities, the tangential stresses, and the interfacial area of two-phase flows in the working 

zone of a device are not known, and, therefore, the problem is often solved empirically. This leads to an increase in time and 

cost of the design of industrial units. 

The current study has attempted to obtain, within the framework of a unified approach [1-3], a mathematical 

description of the mass transfer during free droplet motion in extractors. 

The mass and heat transfer in dispersed flows may be represented by three stages, viz., transfer in the period of 

droplet formation, free motion of the elements of the dispersed medium in the working zone of the device, and coalescence. 

In some cases, the material transfer in the period of droplet formation may amount to 50-90% of the total transferred mass 

[4-6], and the mathematical modeling of an "inlet effect" is then of great importance. However, dimensions of the industrial 

unit and the velocity of the phase motion are in many cases such that the major portion of the material under the extraction 

conditions is extracted over the time of free motion of the droplets. 

It is well known that a turbulent uniphase flow along a smooth solid surface commences at Reynolds numbers larger 

than 104. The droplet motion occurs at smaller values of Red, which, at first sight, allows one to regard the boundary layer 

on the interface as laminar. However, the hydrodynamic regularities of the motion of two-phase media in many cases differ 

appreciably from the hydrodynamics of uniphase flows. 

Disturbing factors (turbulence sources) in the two-phase media may be subdivided into two classes. The first is 

internal sources, viz., a mobile interface, a wave formation at the interface, a Marangoni effect, and a number of other 

factors [7-9]. To the second class we may assign turbulence caused by a mechanical agitation, and by a pulsatory or a 

vibrational motion of the medium in the working zone of the extractor. Therefore, it may be assumed that, in real conditions, 

the droplet boundary layer is nearly always disturbed by turbulent pulsations, increasing the rate of the mass and heat 

transfer. 

The droplet motion in industrial extractors is effected, as a rule, when Re d >> 1, which corresponds to Peclet 

numbers Pe > 103. This allows consideration of the transfer processes based on the diffusion layer model. 

If the process is limited by the dispersed phase, the diffusion boundary layer forms inside the droplet. In the course 

of time the mean concentration inside the droplet will begin to change noticeably, but in many cases the mass transfer 

coefficients can be calculated in the framework of a stationary boundary layer model [10] with accuracy sufficient for 

practical purposes. 
Statement of the Problem. Let us write a mass flux in the boundary layer of dispersed and continuous phases with 

allowance for molecular and turbulent transfer 
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j = ( D 4 - D ,  t) dC 
�9 dy (1) 

Based on expression (1), resistance to the mass transfer in the boundary layer of thickness ~ is presented in the form 

6. dg 
1 =  (C. .--Cin) _--5 (D4-Dt)  (2) 

For the coefficient Dt(y ), various power functions of the distance to the interface are employed [1-3, 11-13]. The 
range of application of such functions is generally bounded by the thickness of the viscous sublayer in the turbulent boundary 
layer. However, the structure of the boundary layer on the droplet interface differs from the structure of the classical 
turbulent boundary layer, and the range of application of these functions is not known. In this case, we proceed as follows: 
we use familiar power functions Dt(y ) in a viscous sublayer of the turbulent boundary layer, whereas their operation region 
(the thickness fi in expression (2)) is found from the fulfillment of the condition of momentum balance in the boundary layer 

on the droplet interface [14]. 
Modeling of the Mass Transfer in a Continuous Phase (external problem). If the rate of the diffusion process is 

limited by the rate of mass exchange in the continuous phase, then the magnitude of the mass flux is dependent on the 

hydrodynamics of the external flow and on the physical properties of the continuous medium. 

The mass transfer in the continuous phase during stationary motion of the droplet with a Peeler number Pe = 

V~dd/D > 10 3 is usually examined in the framework of the diffusion boundary layer model. The resistance to the mass 
transfer in the boundary layer of the continuous phase has the form (2), where a decay law Dt(y ) is used as the power 
function [1-3, 11, 12]: 

Dt,2 = U.~82 (y/82) n. (3) 

For systems with a mobile interface and with a ratio of viscosities of dispersed and continuous phases/z* = /Zd//~ c < 
1 there is a relation /3 -- D 1A, and then the exponent in expression (3) is also equal to n = 2 according to the established 
relationship [2, 3]/3 - D (n-1)/n. In this case, Eqs. (2) and (3) yield [2] 

U,~ 
I]~ = arctg ] / ~ - I / R - ~ , S c  (4) 

If the viscosity ratio of the droplet and the continuous medium is much greater than unity, the droplet motion is similar to the 
motion of a solid particle (Uin = 0). Here, the dependence of the mass transfer coefficient on the molecular diffusion 
coefficient is close in form to/3 - D 2/3, and in expression (3), n = 3. This also holds for systems with surfactants. 

At n = 3, the expression for/3 appears as [3] 

8tl ~--- 
6 q/'~ U,~L 2 

(L 4- 1)* 4- 6 aretg 2 -- L ' 
1 /3 in  L (L + I ) +  I 'V3"L 4:. ~ (5) 

where L = (R62Sc) 1/3. 

The parameter R62 in the droplet boundary layer will be found from the known character of the momentum transfer 
[14]. The resistance to the momentum transfer is presented analogously to Eq. (2) 

1 p~AU.., r 6' dy  (6) 
~l '~ o ('v + vt)~ 

where  AI,~I~2 = 0 ~ 2  -- IJin is the mean motive force of the momentum transfer, m/see. 
Assuming the turbulent Schmidt number to differ insignificantly from unity, the coefficient vt2(Y ) is taken in the form 

(3), viz., ~'t2 = Dt2" 

Expression (6) is integrated for n = 2 to give the value of the parameter Ra2 in the boundary layer of the continuous 
phase 



Rs,= {. aO., }=. 
u ,,  . c-i-g-g V (7) 

For n = 3, the integration of expression (6) yields 

Rt~= (B+Ip q-6arctg 2 - - B  ' 
U , ,  V3"ln B (B + 1) + 1 B-V3" + n (8) 

where B = (1/R82) 1/3. 

Modeling of Mass Transfer in a Dispersed Phase (internal problem). When the mass transfer process is limited by 
the dispersed phase, the boundary layer originates inside the droplet. 

The condition of turbulent diffusion decay in the boundary layer of the dispersed phase on a mobile interface is taken 
in the form of the relation [11, 12] 

Dt, ---- U.xy~/~, (9) 

where X 1 is the minimal curvature radius of the surface deformation, defined as X 1 -~ 2o/(PlU,12). 
From expressions (2) and (9) we derive the equation to determine the mass transfer coefficient 

1 1 / 1 1  [St pzU~**6~ V---~ arctg ,~ ~ (10) al 

where ~1 = Ylh31 and a 1 = 2Dla/U.13~12Ol . Hence 

r 

8, = ] /  U,lpxDt U,t 
V 2ct 

arctg V '  Set U.1R~lvlpx (11) 
2a 

To define the parameter R~I, we present the resistance to the momentum transfer in the boundary layer of the 
dispersed phase similarly to Eq. (2) 

1 P, ( U . . ~ - - U r p ) i  dy 
'~1 . 0 (~r + Vt ) l  

(12) 

Assuming that the turbulent Schmidt number differs little from unity, we present the turbulent viscosity coefficient 

Vtl(Y ) in the form (9), viz., vtl ~ Dtl. As a result of integrating Eq. (12) we obtain 

R 6 t . = /  2or tg(AU,,i V .%p~ ). 
%ptU.,  2oU.t (13) 

The motive force of the momentum transfer AI]r = 0o.1 -- l]in for the boundary layer inside the droplet is 
determined by the difference in the liquid velocities on the interface lSlin and in the core Or162 1- From the condition of symme- 
try of the velocity field we have 0o. 1 = 0 for the droplet core, and then AO~ = [~Jin" 

Determination of Basic Parameters of the Model. Among the basic parameters of the derived model are the 
dynamic velocity U. and the velocity on the droplet interface Olin. 

In the case of nonseparated flow past the droplet (Re d < 100 [15]), from the condition of balance of the forces, when 
a pressure drop is equilibrated with a friction force on the interface, we have 

U,I  ~- V**d V P l ~ d  U , i =  V**d 8" " 9x8 ' 1//  ~d (14) 
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Fig. 1 Fig. 2 

Fig. 1. The dimensionless complex ShlSc ~ as a function of Re d in extraction of different 
systems: 1, 2) calculation from Eq. (4); 3, 4) experimental data [17]; 1, 3) the water (con- 
tinuous phase)-aniline-xylene system; 2, 4) the water (continuous phase)-benzoic ac- 

id-benzene system. 

Fig. 2. The relation for the mass transfer coefficient in a dispersed phase in extraction of the 
amyl alcohol-phenol-water system, the dispersed phase is water: 1) calculation from Eq. 
(11); 2) experimental data [17];/x* = 1.73; D 1 = 0.84 • 10 -9 m2/sec, t ,  m/sec. 

If Re d > 100-200, a separation of the boundary layer is observed in the trailing part, and Eqs. (14) give a significant error. 
The dynamic velocity for Re d > 200 is expressed in terms of the energy dissipation in the dispersed phase using the familiar 

relation 

dU 2 dU 
8=-x dy =U*IP1 dy ' (15) 

where the derivative is found from the equation r = pl(e + et)dU/dy. Hence 

4 ,~a 
B =  U .  apl _ (16) 

('~ + ~ th  Px (~ + ~t)x " 

Adopting the well-known assumptions of Prandtl that the momentum flux r across the boundary layer is a constant 

value and utilizing the function Utl(Y) (9), we find the mean energy dissipation 

' t /  
~- _-- U,  lPl 2or arctg Rglvlo1U,1 (17) 

R~lVl U, lVlp I 20" 

Hence we obtain mean values of the dynamic velocity in the dispersed 

pl 2~r V / R ~ v l p l u , 1  (18) 
arctg 2~ 

and continuous phases U. 2 = U,l(Pl/P2) t'5. 
The mean energy dissipation over the droplet volume is presented in terms of the pressure drop or the resistance 

coefficient 

PlV~d -[= AP~R~V**d 3 a 
= ~d - -  (19) 413zRad 8 Rd 

Therefore, the dynamic velocity in the boundary layer of the dispersed or continuous phases may be computed from the 
solution of Eqs. (13) and (16) with the parameters Uin and g (19). The value of 0in at small Reynolds numbers may be 
predicted using the Adamar-Rybchinskii function [10]. 
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Fig. 3. The dimensionless complex Sh/Sc '~ 

as a function of Re d in extraction of the 

water-acetic acid-benzene system; the 

dispersed phase is benzene: 1) calculation 

from the mathematical model; 2) calcula- 

tion from empirical expressions [18]; 3) 

experimental data [17]; /z* = 0.65; D 1 = 

1.77 • 10 -9 m/see. 

The mean velocity on the droplet interface for Re d > > 1 is found from the balance equations of the forces written 

for the droplet and the solid particle at identical conditions of motion in the continuous medium. 

It is well known [15, 16] that, owing to the interface mobility, the drople t floats up at a velocity higher than that of 

a solid particle of the same size, with other conditions being equal. This results from the fact that the condition of liquid 

attachment (Uin = 0) is fulfilled at the surface of the solid body. At the liquid-liquid interface a relative motion of the phases 

occurs, if/z* is insignificantly larger than unity. Therefore, in the motion of the solid particle, velocity gradients at its surface 

are greater than in the boundary layer during the droplet flotation under similar conditions, and the resistance coefficient of 

the solid particle is larger than that of the droplet. In the region of a steady motion of the droplet the resistance coefficient 

decreases with rising Re d number, remaining all the time lower than the resistance coefficient of the solid sphere. 

It may be assumed that the velocity of the droplet is higher than that of the solid particle by the value of the mean 

velocity of the liquid at the interface Uin ~ V ~ d  -- Ve~ s. In this case, the balance equations of forces, written for the droplet 

and the sphere, yield the following expression: 

U i n = V * * d ( 1 - - V / c - ~ - -  ) for ~d<~s �9 (20) 

As Re d increases due to the droplet deformation, the resistance coefficient ~d starts to rise, attaining the value of the 
resistance coefficient for the solid sphere ~s, and afterwards exceeds its value by severalfold [15]. The resistance minimum is 
at Re d > 200. In this case we assume that the mean velocity of the liquid at the droplet interface varies insignificantly with 

increasing Re d number, and its value may be taken as at Re d = 200, if the Reynolds number is larger than this value. 

Empirical expressions [15-17] are recommended for the resistance coefficients of the droplet and the solid sphere at 

different Re d . 
Main Results and Deductions. The mathematical model developed is verified by comparing the mass transfer 

coefficients (4) and (11) with experimental data of various authors [17, 18]. 
Figure 1 gives the complex Sh/Sc v~ as a function of Re d in extraction of different systems when the mass transfer 

process is limited by a continuous phase. 
Equation (11) is checked in calculating the mass transfer coefficients in the dispersed phase over the Reynolds 

number range Re d = 60-700 at/~* = 0.65-1.75 and Sc = 570-848. 
Figures 2 and 3 present correlations of the calculated results and the experimental data. 

The agreement with experimental data in most cases lies within + (15-20)%. 
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The derived equations allow calculation of the mass transfer coefficients in extractors with input of the external 
energy to the contacting phases. The mean value of the dissipated energy is determined in this case by the ratio of the power 

expended on agitation, as well as on vibrational and pulsatory motion of the phases, to the working volume of the two-phase 

medium. 
The mathematical model given may be recommended for computing the kinetic characteristics of two-phase turbulent 

flows using only results of the hydraulic investigation of contact devices. 

NOTATION 

Co., Cin, substance concentration in the phase core and at the interface; dd, droplet diameter, m; D, Dt, coefficients 
of molecular and turbulent diffusion, m2/sec; j, mass flux; AP, pressure drop, Pa; R~, dimensionless thickness of the 
boundary layer; Rd, droplet radius, m; U.,  dynamic velocity of friction, m/see; Uin , liquid velocity at the interface, m/sec; 
U~,  liquid velocity at the outer edge of the boundary layer, m/see; AU~,  motive force of momentum transfer, m/see; V~, 
velocity of the droplet motion, m/see; y, transverse coordinate, m; 6, boundary layer thickness, m; e, energy dissipation, 
m2/sec3;/z, dynamic viscosity, Pa'sec;/~* = /xl/t~2; u, kinetic viscosity, m2/sec; ~d, (s, resistance coefficients of the droplet 
and the sphere; o, surface tension, N/m; r, momentum flux, Pa;/3, mass transfer coefficient, m/sec; 3', momentum transfer 
coefficient, m/see; p, density, kg/m 3. Complexes: Re d = 2V~Rd/~ , Reynolds number for the droplet; Sc = u/D, Schmidt 
number; R~ = U.6/u. Subscripts: 1, dispersed phase; 2, solid phase. 
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